Source code for mridc.collections.reconstruction.models.ccnn

# coding=utf-8
__author__ = "Dimitrios Karkalousos"

from abc import ABC

import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer
from torch.nn import L1Loss

from mridc.collections.common.losses.ssim import SSIMLoss
from mridc.collections.common.parts.fft import ifft2
from mridc.collections.common.parts.utils import coil_combination
from mridc.collections.reconstruction.models.base import BaseMRIReconstructionModel
from mridc.collections.reconstruction.models.cascadenet.ccnn_block import CascadeNetBlock
from mridc.collections.reconstruction.models.conv.conv2d import Conv2d
from mridc.collections.reconstruction.parts.utils import center_crop_to_smallest
from mridc.core.classes.common import typecheck

__all__ = ["CascadeNet"]


[docs]class CascadeNet(BaseMRIReconstructionModel, ABC): """ Implementation of the Deep Cascade of Convolutional Neural Networks, as presented in Schlemper, J., \ Caballero, J., Hajnal, J. V., Price, A., & Rueckert, D. References ---------- .. Schlemper, J., Caballero, J., Hajnal, J. V., Price, A., & Rueckert, D., A Deep Cascade of Convolutional \ Neural Networks for MR Image Reconstruction. Information Processing in Medical Imaging (IPMI), 2017. \ Available at: https://arxiv.org/pdf/1703.00555.pdf """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): # init superclass super().__init__(cfg=cfg, trainer=trainer) cfg_dict = OmegaConf.to_container(cfg, resolve=True) self.coil_combination_method = cfg_dict.get("coil_combination_method") self.fft_centered = cfg_dict.get("fft_centered") self.fft_normalization = cfg_dict.get("fft_normalization") self.spatial_dims = cfg_dict.get("spatial_dims") self.coil_dim = cfg_dict.get("coil_dim") # Cascades of CascadeCNN blocks self.cascades = torch.nn.ModuleList( [ CascadeNetBlock( Conv2d( in_channels=2, out_channels=2, hidden_channels=cfg_dict.get("hidden_channels"), n_convs=cfg_dict.get("n_convs"), batchnorm=cfg_dict.get("batchnorm"), ), fft_centered=self.fft_centered, fft_normalization=self.fft_normalization, spatial_dims=self.spatial_dims, coil_dim=self.coil_dim, no_dc=cfg_dict.get("no_dc"), ) for _ in range(cfg_dict.get("num_cascades")) ] ) self.coil_combination_method = cfg_dict.get("coil_combination_method") # initialize weights if not using pretrained ccnn # TODO if not cfg_dict.get("pretrained", False) self.train_loss_fn = SSIMLoss() if cfg_dict.get("train_loss_fn") == "ssim" else L1Loss() self.eval_loss_fn = SSIMLoss() if cfg_dict.get("eval_loss_fn") == "ssim" else L1Loss() self.accumulate_estimates = False self.dc_weight = torch.nn.Parameter(torch.ones(1))
[docs] @typecheck() def forward( self, y: torch.Tensor, sensitivity_maps: torch.Tensor, mask: torch.Tensor, init_pred: torch.Tensor, target: torch.Tensor, ) -> torch.Tensor: """ Forward pass of the network. Parameters ---------- y: Subsampled k-space data. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] sensitivity_maps: Coil sensitivity maps. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] mask: Sampling mask. torch.Tensor, shape [1, 1, n_x, n_y, 1] init_pred: Initial prediction. torch.Tensor, shape [batch_size, n_x, n_y, 2] target: Target data to compute the loss. torch.Tensor, shape [batch_size, n_x, n_y, 2] Returns ------- pred: list of torch.Tensor, shape [batch_size, n_x, n_y, 2], or torch.Tensor, shape [batch_size, n_x, n_y, 2] If self.accumulate_loss is True, returns a list of all intermediate estimates. If False, returns the final estimate. """ pred = y.clone() for cascade in self.cascades: pred = cascade(pred, y, sensitivity_maps, mask) pred = torch.view_as_complex( coil_combination( ifft2( pred, centered=self.fft_centered, normalization=self.fft_normalization, spatial_dims=self.spatial_dims, ), sensitivity_maps, method=self.coil_combination_method, dim=self.coil_dim, ) ) _, pred = center_crop_to_smallest(target, pred) return pred