Source code for mridc.collections.reconstruction.models.crnn

# coding=utf-8
__author__ = "Dimitrios Karkalousos"

from abc import ABC
from typing import Generator, Union

import numpy as np
import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer
from torch.nn import L1Loss

from mridc.collections.common.losses.ssim import SSIMLoss
from mridc.collections.common.parts.fft import ifft2
from mridc.collections.common.parts.utils import coil_combination
from mridc.collections.reconstruction.models.base import BaseMRIReconstructionModel
from mridc.collections.reconstruction.models.conv.gruconv2d import GRUConv2d
from mridc.collections.reconstruction.models.convrecnet.crnn_block import RecurrentConvolutionalNetBlock
from mridc.collections.reconstruction.parts.utils import center_crop_to_smallest
from mridc.core.classes.common import typecheck

__all__ = ["CRNNet"]


[docs]class CRNNet(BaseMRIReconstructionModel, ABC): """ Implementation of the Convolutional Recurrent Neural Network, inspired by C. Qin, J. Schlemper, J. Caballero, \ A. N. Price, J. V. Hajnal and D. Rueckert. References ---------- .. C. Qin, J. Schlemper, J. Caballero, A. N. Price, J. V. Hajnal and D. Rueckert, "Convolutional Recurrent \ Neural Networks for Dynamic MR Image Reconstruction," in IEEE Transactions on Medical Imaging, vol. 38, \ no. 1, pp. 280-290, Jan. 2019, doi: 10.1109/TMI.2018.2863670. """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): # init superclass super().__init__(cfg=cfg, trainer=trainer) cfg_dict = OmegaConf.to_container(cfg, resolve=True) self.no_dc = cfg_dict.get("no_dc") self.fft_centered = cfg_dict.get("fft_centered") self.fft_normalization = cfg_dict.get("fft_normalization") self.spatial_dims = cfg_dict.get("spatial_dims") self.coil_dim = cfg_dict.get("coil_dim") self.num_iterations = cfg_dict.get("num_iterations") self.crnn = RecurrentConvolutionalNetBlock( GRUConv2d( in_channels=2, out_channels=2, hidden_channels=cfg_dict.get("hidden_channels"), n_convs=cfg_dict.get("n_convs"), batchnorm=cfg_dict.get("batchnorm"), ), num_iterations=self.num_iterations, fft_centered=self.fft_centered, fft_normalization=self.fft_normalization, spatial_dims=self.spatial_dims, coil_dim=self.coil_dim, no_dc=self.no_dc, ) self.coil_combination_method = cfg_dict.get("coil_combination_method") # initialize weights if not using pretrained ccnn # TODO if not ccnn_cfg_dict.get("pretrained", False) self.train_loss_fn = SSIMLoss() if cfg_dict.get("train_loss_fn") == "ssim" else L1Loss() self.eval_loss_fn = SSIMLoss() if cfg_dict.get("eval_loss_fn") == "ssim" else L1Loss() self.accumulate_estimates = True
[docs] @typecheck() def forward( self, y: torch.Tensor, sensitivity_maps: torch.Tensor, mask: torch.Tensor, init_pred: torch.Tensor, target: torch.Tensor, ) -> Union[Generator, torch.Tensor]: """ Forward pass of the network. Parameters ---------- y: Subsampled k-space data. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] sensitivity_maps: Coil sensitivity maps. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] mask: Sampling mask. torch.Tensor, shape [1, 1, n_x, n_y, 1] init_pred: Initial prediction. torch.Tensor, shape [batch_size, n_x, n_y, 2] target: Target data to compute the loss. torch.Tensor, shape [batch_size, n_x, n_y, 2] Returns ------- pred: list of torch.Tensor, shape [batch_size, n_x, n_y, 2], or torch.Tensor, shape [batch_size, n_x, n_y, 2] If self.accumulate_loss is True, returns a list of all intermediate estimates. If False, returns the final estimate. """ pred = self.crnn(y, sensitivity_maps, mask) yield [self.process_intermediate_pred(x, sensitivity_maps, target) for x in pred]
[docs] def process_intermediate_pred(self, pred, sensitivity_maps, target): """ Process the intermediate prediction. Parameters ---------- pred: Intermediate prediction. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] sensitivity_maps: Coil sensitivity maps. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] target: Target data to crop to size. torch.Tensor, shape [batch_size, n_x, n_y, 2] Returns ------- pred: torch.Tensor, shape [batch_size, n_x, n_y, 2] Processed prediction. """ pred = ifft2( pred, centered=self.fft_centered, normalization=self.fft_normalization, spatial_dims=self.spatial_dims ) pred = coil_combination(pred, sensitivity_maps, method=self.coil_combination_method, dim=self.coil_dim) pred = torch.view_as_complex(pred) _, pred = center_crop_to_smallest(target, pred) return pred
[docs] def process_loss(self, target, pred, _loss_fn): """ Process the loss. Parameters ---------- target: Target data. torch.Tensor, shape [batch_size, n_x, n_y, 2] pred: Final prediction(s). list of torch.Tensor, shape [batch_size, n_x, n_y, 2], or torch.Tensor, shape [batch_size, n_x, n_y, 2] _loss_fn: Loss function. torch.nn.Module, default torch.nn.L1Loss() Returns ------- loss: torch.FloatTensor, shape [1] If self.accumulate_loss is True, returns an accumulative result of all intermediate losses. """ target = torch.abs(target / torch.max(torch.abs(target))) if "ssim" in str(_loss_fn).lower(): max_value = np.array(torch.max(torch.abs(target)).item()).astype(np.float32) def loss_fn(x, y): """Calculate the ssim loss.""" return _loss_fn( x.unsqueeze(dim=self.coil_dim), torch.abs(y / torch.max(torch.abs(y))).unsqueeze(dim=self.coil_dim), data_range=torch.tensor(max_value).unsqueeze(dim=0).to(x.device), ) else: def loss_fn(x, y): """Calculate other loss.""" return _loss_fn(x, torch.abs(y / torch.max(torch.abs(y)))) iterations_loss = [loss_fn(target, iteration_pred) for iteration_pred in pred] _loss = [x * torch.logspace(-1, 0, steps=self.num_iterations).to(iterations_loss[0]) for x in iterations_loss] yield sum(sum(_loss) / self.num_iterations)