Source code for mridc.collections.reconstruction.models.unet

# coding=utf-8
__author__ = "Dimitrios Karkalousos"

from abc import ABC

import torch
from omegaconf import DictConfig, OmegaConf
from pytorch_lightning import Trainer
from torch.nn import L1Loss

from mridc.collections.common.losses.ssim import SSIMLoss
from mridc.collections.common.parts.fft import ifft2
from mridc.collections.common.parts.utils import coil_combination
from mridc.collections.reconstruction.models.base import BaseMRIReconstructionModel
from mridc.collections.reconstruction.models.unet_base.unet_block import NormUnet
from mridc.collections.reconstruction.parts.utils import center_crop_to_smallest
from mridc.core.classes.common import typecheck

__all__ = ["UNet"]


[docs]class UNet(BaseMRIReconstructionModel, ABC): """ Implementation of the UNet, as presented in O. Ronneberger, P. Fischer, and Thomas Brox. References ---------- .. O. Ronneberger, P. Fischer, and Thomas Brox. U-net: Convolutional networks for biomedical image segmentation. \ In International Conference on Medical image computing and computer-assisted intervention, pages 234–241. \ Springer, 2015. """ def __init__(self, cfg: DictConfig, trainer: Trainer = None): # init superclass super().__init__(cfg=cfg, trainer=trainer) cfg_dict = OmegaConf.to_container(cfg, resolve=True) self.fft_centered = cfg_dict.get("fft_centered") self.fft_normalization = cfg_dict.get("fft_normalization") self.spatial_dims = cfg_dict.get("spatial_dims") self.coil_dim = cfg_dict.get("coil_dim") self.unet = NormUnet( chans=cfg_dict.get("channels"), num_pools=cfg_dict.get("pooling_layers"), padding_size=cfg_dict.get("padding_size"), normalize=cfg_dict.get("normalize"), ) self.coil_combination_method = cfg_dict.get("coil_combination_method") # initialize weights if not using pretrained unet # TODO if not cfg_dict.get("pretrained", False): self.train_loss_fn = SSIMLoss() if cfg_dict.get("train_loss_fn") == "ssim" else L1Loss() self.eval_loss_fn = SSIMLoss() if cfg_dict.get("eval_loss_fn") == "ssim" else L1Loss() self.accumulate_estimates = False
[docs] @typecheck() def forward( self, y: torch.Tensor, sensitivity_maps: torch.Tensor, mask: torch.Tensor, init_pred: torch.Tensor, target: torch.Tensor, ) -> torch.Tensor: """ Forward pass of the network. Parameters ---------- y: Subsampled k-space data. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] sensitivity_maps: Coil sensitivity maps. torch.Tensor, shape [batch_size, n_coils, n_x, n_y, 2] mask: Sampling mask. torch.Tensor, shape [1, 1, n_x, n_y, 1] init_pred: Initial prediction. torch.Tensor, shape [batch_size, n_x, n_y, 2] target: Target data to compute the loss. torch.Tensor, shape [batch_size, n_x, n_y, 2] Returns ------- pred: list of torch.Tensor, shape [batch_size, n_x, n_y, 2], or torch.Tensor, shape [batch_size, n_x, n_y, 2] If self.accumulate_loss is True, returns a list of all intermediate estimates. If False, returns the final estimate. """ eta = torch.view_as_complex( coil_combination( ifft2( y, centered=self.fft_centered, normalization=self.fft_normalization, spatial_dims=self.spatial_dims ), sensitivity_maps, method=self.coil_combination_method, dim=self.coil_dim, ) ) _, eta = center_crop_to_smallest(target, eta) return torch.view_as_complex(self.unet(torch.view_as_real(eta.unsqueeze(self.coil_dim)))).squeeze( self.coil_dim )