Source code for mridc.core.optim.lr_scheduler

# encoding: utf-8
__author__ = "Dimitrios Karkalousos"

# Taken and adapted from: https://github.com/NVIDIA/NeMo/blob/main/nemo/core/optim/lr_scheduler.py

import copy
import dataclasses
import math
import warnings
from functools import partial
from typing import Any, Dict, Optional, Union

import hydra
import torch.optim as optim
import torch.optim.lr_scheduler as pt_scheduler
import torch.utils.data.dataloader as dataloader
from omegaconf import DictConfig, OmegaConf
from torch.optim.lr_scheduler import _LRScheduler  # type: ignore

from mridc.core.conf.schedulers import SchedulerParams, get_scheduler_config, register_scheduler_params
from mridc.utils import logging
from mridc.utils.model_utils import maybe_update_config_version


[docs]class WarmupPolicy(_LRScheduler): """Adds warmup kwargs and warmup logic to lr policy. All arguments should be passed as kwargs for clarity. Parameters ---------- warmup_steps: Number of training steps in warmup stage. warmup_ratio: Ratio of warmup steps to total steps. max_steps: Total number of steps while training or `None` for infinite training. Returns ------- lr: Learning rate for current step. """ def __init__(self, optimizer, *, warmup_steps=None, warmup_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1): """ Parameters ---------- optimizer: optimizer warmup_steps: Number of training steps in warmup stage warmup_ratio: Ratio of warmup steps to total steps max_steps: Total number of steps while training or `None` for infinite training min_lr: Minimum learning rate last_epoch: Last epoch """ if warmup_steps is not None and warmup_ratio is not None: raise AssertionError("Either use particular number of step or ratio") if warmup_ratio is not None and max_steps is None: raise AssertionError("If there is a ratio, there should be a total steps") # It is necessary to assign all attributes *before* __init__, # as class is wrapped by an inner class. self.max_steps = max_steps if warmup_steps is not None: self.warmup_steps = warmup_steps elif warmup_ratio is not None: self.warmup_steps = int(warmup_ratio * max_steps) else: self.warmup_steps = 0 self.min_lr = min_lr super().__init__(optimizer, last_epoch)
[docs] def get_lr(self): """Get learning rate at current step.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning ) step = self.last_epoch if 0 < self.warmup_steps >= step: return self._get_warmup_lr(step) if step > self.max_steps: return [self.min_lr for _ in self.base_lrs] return self._get_lr(step)
def _get_warmup_lr(self, step): """Linear warmup""" lr_val = (step + 1) / (self.warmup_steps + 1) return [initial_lr * lr_val for initial_lr in self.base_lrs] def _get_lr(self, step): """Simple const lr policy""" return self.base_lrs
[docs]class SquareRootConstantPolicy(_LRScheduler): """Adds warmup kwargs and warmup logic to lr policy. All arguments should be passed as kwargs for clarity. Parameters ---------- warmup_steps: Number of training steps in warmup stage warmup_ratio: Ratio of warmup steps to total steps max_steps: Total number of steps while training or `None` for infinite training """ def __init__( self, optimizer, *, constant_steps=None, constant_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1 ): """ Parameters ---------- optimizer: optimizer constant_steps: Number of training steps in constant stage constant_ratio: Ratio of constant steps to total steps max_steps: Total number of steps while training or `None` for infinite training min_lr: Minimum learning rate last_epoch: Last epoch """ if constant_steps is not None and constant_ratio is not None: raise AssertionError("Either use particular number of step or ratio") if constant_ratio is not None and max_steps is None: raise AssertionError("If there is a ratio, there should be a total steps") # It is necessary to assign all attributes *before* __init__, as class is wrapped by an inner class. self.max_steps = max_steps if constant_steps is not None: self.constant_steps = constant_steps elif constant_ratio is not None: self.constant_steps = int(constant_ratio * max_steps) else: self.constant_steps = 0 self.constant_lr = 1 / (constant_steps**0.5) self.min_lr = min_lr super().__init__(optimizer, last_epoch)
[docs] def get_lr(self): """Get learning rate at current step.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning ) step = self.last_epoch if step <= self.constant_steps: return [self.constant_lr for _ in self.base_lrs] if step > self.max_steps: return [self.min_lr for _ in self.base_lrs] return self._get_lr(step)
def _get_lr(self, step): """Simple const lr policy""" return self.base_lrs
[docs]class WarmupHoldPolicy(WarmupPolicy): """ Variant of WarmupPolicy which maintains high learning rate for a defined number of steps. All arguments should be passed as kwargs for clarity, Parameters ---------- warmup_steps: Number of training steps in warmup stage warmup_ratio: Ratio of warmup steps to total steps hold_steps: Number of training steps to hold the learning rate after warm up hold_ratio: Ratio of hold steps to total steps max_steps: Total number of steps while training or `None` for infinite training Results ------- Learning rate is linearly increased from 0 to 1 over warmup steps, then linearly decreased from 1 to 0 over hold steps. """ def __init__( self, optimizer, *, warmup_steps=None, warmup_ratio=None, hold_steps=None, hold_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1, ): """ Parameters ---------- optimizer: optimizer warmup_steps: Number of training steps in warmup stage. warmup_ratio: Ratio of warmup steps to total steps. hold_steps: Number of training steps to hold the learning rate after warm up. hold_ratio: Ratio of hold steps to total steps. max_steps: Total number of steps while training or `None` for infinite training. min_lr: Minimum learning rate. last_epoch: Last epoch. """ if hold_steps is not None and hold_ratio is not None: raise AssertionError("Either use particular number of step or ratio") if hold_ratio is not None and max_steps is None: raise AssertionError("If there is a ratio, there should be a total steps") self.min_lr = min_lr self._last_warmup_lr = 0.0 # Necessary to duplicate as class attributes are hidden in inner class self.max_steps = max_steps if warmup_steps is not None: self.warmup_steps = warmup_steps elif warmup_ratio is not None: self.warmup_steps = int(warmup_ratio * max_steps) else: self.warmup_steps = 0 if hold_steps is not None: self.hold_steps = hold_steps + self.warmup_steps elif hold_ratio is not None: self.hold_steps = int(hold_ratio * max_steps) + self.warmup_steps else: self.hold_steps = 0 super().__init__( optimizer, warmup_steps=warmup_steps, warmup_ratio=warmup_ratio, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, )
[docs] def get_lr(self): """Get learning rate at current step.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, " "please use `get_last_lr()`.", UserWarning ) step = self.last_epoch # Warmup phase if 0 < self.warmup_steps >= step: return self._get_warmup_lr(step) # Hold phase if self.hold_steps < step >= self.warmup_steps: return self.base_lrs if step > self.max_steps: return [self.min_lr for _ in self.base_lrs] return self._get_lr(step)
[docs]class WarmupAnnealHoldPolicy(_LRScheduler): """ Adds warmup kwargs and warmup logic to lr policy. All arguments should be passed as kwargs for clarity. Parameters ---------- warmup_steps: Number of training steps in warmup stage warmup_ratio: Ratio of warmup steps to total steps max_steps: Total number of steps while training or `None` for infinite training min_lr: Minimum lr to hold the learning rate after decay at. constant_steps: Number of steps to keep lr constant at. constant_ratio: Ratio of steps to keep lr constant. """ def __init__( self, optimizer, *, warmup_steps=None, warmup_ratio=None, constant_steps=None, constant_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1, ): """ Parameters ---------- optimizer: Optimizer warmup_steps: Number of training steps in warmup stage. warmup_ratio: Ratio of warmup steps to total steps. constant_steps: Number of steps to keep lr constant at. constant_ratio: Ratio of steps to keep lr constant. max_steps: Total number of steps while training or `None` for infinite training. min_lr: Minimum lr to hold the learning rate after decay at. last_epoch: The index of last epoch. """ if warmup_steps is not None and warmup_ratio is not None: raise AssertionError("Either use particular number of step or ratio") if constant_steps is not None and constant_ratio is not None: raise AssertionError("Either use constant_steps or constant_ratio") if warmup_ratio is not None and max_steps is None: raise AssertionError("If there is a ratio, there should be a total steps") # It is necessary to assign all attributes *before* __init__, as class is wrapped by an inner class. self.max_steps = max_steps if warmup_steps is not None: self.warmup_steps = warmup_steps elif warmup_ratio is not None: self.warmup_steps = int(warmup_ratio * max_steps) else: self.warmup_steps = 0 if constant_steps is not None: self.constant_steps = constant_steps elif constant_ratio is not None: self.constant_steps = int(constant_ratio * max_steps) else: self.constant_steps = 0 self.decay_steps = max_steps - (self.constant_steps + self.warmup_steps) self.min_lr = min_lr super().__init__(optimizer, last_epoch)
[docs] def get_lr(self): """Get learning rate at current step.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning ) step = self.last_epoch # Warmup steps if 0 < self.warmup_steps >= step: return self._get_warmup_lr(step) # Constant steps after warmup and decay if self.constant_steps > 0 and (self.warmup_steps + self.decay_steps) < step <= self.max_steps: return self._get_constant_lr(step) # Min lr after max steps of updates if step > self.max_steps: return [self.min_lr for _ in self.base_lrs] return self._get_lr(step)
def _get_warmup_lr(self, step): """Get learning rate at warmup stage.""" lr_val = (step + 1) / (self.warmup_steps + 1) return [initial_lr * lr_val for initial_lr in self.base_lrs] def _get_constant_lr(self, step): """Get learning rate at constant stage.""" return [self.min_lr for _ in self.base_lrs] def _get_lr(self, step): """Simple const lr policy""" return self.base_lrs
def _sqrt_annealing(initial_lr, step, max_steps, min_lr): """Anneal learning rate by sqrt.""" mult = ((max_steps - step) / max_steps) ** 0.5 out_lr = initial_lr * mult out_lr = max(out_lr, min_lr) return out_lr def _square_annealing(initial_lr, step, max_steps, min_lr): """Anneal learning rate by square.""" mult = ((max_steps - step) / max_steps) ** 2 out_lr = initial_lr * mult out_lr = max(out_lr, min_lr) return out_lr def _cosine_annealing(initial_lr, step, max_steps, min_lr): """Anneal learning rate by cosine.""" mult = 0.5 * (1 + math.cos(math.pi * step / max_steps)) return (initial_lr - min_lr) * mult + min_lr def _linear_warmup_with_cosine_annealing(max_lr, warmup_steps, step, decay_steps, min_lr): """Anneal learning rate by linear warmup and cosine annealing.""" if max_lr <= min_lr: raise AssertionError # Use linear warmup for the initial part. if warmup_steps > 0 and step <= warmup_steps: return max_lr * float(step) / float(warmup_steps) # For any steps larger than `decay_steps`, use `min_lr`. if step > warmup_steps + decay_steps: return min_lr # If we are done with the warmup period, use the decay style. num_steps_ = step - warmup_steps decay_steps_ = decay_steps decay_ratio = float(num_steps_) / float(decay_steps_) if decay_ratio < 0.0: raise AssertionError if decay_ratio > 1.0: raise AssertionError delta_lr = max_lr - min_lr coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0) return min_lr + coeff * delta_lr def _poly_decay(initial_lr, step, decay_steps, power, min_lr, cycle): """Polynomial decay of learning rate.""" if cycle: multiplier = 1.0 if step == 0 else math.ceil(step / decay_steps) decay_steps *= multiplier else: step = min(step, decay_steps) p = step / decay_steps lr = (initial_lr - min_lr) * math.pow(1.0 - p, power) lr += min_lr return lr def _noam_hold_annealing(initial_lr, step, warmup_steps, hold_steps, decay_rate, min_lr): """Anneal learning rate by noam hold.""" # hold_steps = total number of steps to hold the LR, not the warmup + hold steps. T_warmup_decay = max(1, warmup_steps**decay_rate) T_hold_decay = max(1, (step - hold_steps) ** decay_rate) lr = (initial_lr * T_warmup_decay) / T_hold_decay return max(lr, min_lr)
[docs]class SquareAnnealing(WarmupPolicy): """Anneal learning rate by square.""" def __init__(self, optimizer, *, max_steps, min_lr=1e-5, last_epoch=-1, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get learning rate at current step.""" return [ _square_annealing( initial_lr=initial_lr, step=step - self.warmup_steps, max_steps=self.max_steps - self.warmup_steps, min_lr=self.min_lr, ) for initial_lr in self.base_lrs ]
[docs]class SquareRootAnnealing(WarmupPolicy): """Anneal learning rate by square root.""" def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get learning rate at current step.""" return [ _sqrt_annealing( initial_lr=initial_lr, step=step, max_steps=self.max_steps, min_lr=self.min_lr, ) for initial_lr in self.base_lrs ]
[docs]class CosineAnnealing(WarmupAnnealHoldPolicy): """Anneal learning rate by cosine.""" def __init__(self, optimizer, *, max_steps, min_lr=0, last_epoch=-1, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get learning rate at current step.""" for initial_lr in self.base_lrs: if initial_lr < self.min_lr: raise ValueError( f"{self} received an initial learning rate that was lower than the minimum learning rate." ) return ( [ _cosine_annealing( initial_lr=initial_lr, step=step - self.warmup_steps, max_steps=self.max_steps - self.warmup_steps, min_lr=self.min_lr, ) for initial_lr in self.base_lrs ] if self.constant_steps is None or self.constant_steps == 0 else self._get_linear_warmup_with_cosine_annealing_lr(step) ) def _get_warmup_lr(self, step): """Get the warmup learning rate for the given step.""" if self.constant_steps is None or self.constant_steps == 0: return super()._get_warmup_lr(step) # Use linear warmup for the initial part. return self._get_linear_warmup_with_cosine_annealing_lr(step) def _get_constant_lr(self, step): """Only called when constant_steps is not None and not 0.""" return self._get_linear_warmup_with_cosine_annealing_lr(step) def _get_linear_warmup_with_cosine_annealing_lr(self, step): """Cosine Schedule, slightly different warmup schedule + constant LR at the end.""" return [ _linear_warmup_with_cosine_annealing( max_lr=self.base_lrs[0], warmup_steps=self.warmup_steps, step=step, decay_steps=self.decay_steps, min_lr=self.min_lr, ) for _ in self.base_lrs ]
[docs]class NoamAnnealing(_LRScheduler): """Noam learning rate annealing.""" def __init__( self, optimizer, *, d_model, warmup_steps=None, warmup_ratio=None, max_steps=None, min_lr=0.0, last_epoch=-1 ): self._normalize = d_model ** (-0.5) if warmup_steps is not None and warmup_ratio is not None: raise AssertionError("Either use particular number of step or ratio") if warmup_ratio is not None and max_steps is None: raise AssertionError("If there is a ratio, there should be a total steps") # It is necessary to assign all attributes *before* __init__, # as class is wrapped by an inner class. self.max_steps = max_steps if warmup_steps is not None: self.warmup_steps = warmup_steps elif warmup_ratio is not None: self.warmup_steps = int(warmup_ratio * max_steps) else: self.warmup_steps = 0 self.min_lr = min_lr super().__init__(optimizer, last_epoch)
[docs] def get_lr(self): """Get learning rate at current step.""" if not self._get_lr_called_within_step: warnings.warn( "To get the last learning rate computed by the scheduler, please use `get_last_lr()`.", UserWarning ) step = max(1, self.last_epoch) if step > self.max_steps: return [self.min_lr for _ in self.base_lrs] for initial_lr in self.base_lrs: if initial_lr < self.min_lr: raise ValueError( f"{self} received an initial learning rate that was lower than the minimum learning rate." ) return [self._noam_annealing(initial_lr=initial_lr, step=step) for initial_lr in self.base_lrs]
def _noam_annealing(self, initial_lr, step): """Noam learning rate annealing.""" mult = ( self._normalize * min(step ** (-0.5), step * (self.warmup_steps ** (-1.5))) if self.warmup_steps > 0 else self._normalize * step ** (-0.5) ) out_lr = initial_lr * mult if step > self.warmup_steps: out_lr = max(out_lr, self.min_lr) return out_lr
[docs]class NoamHoldAnnealing(WarmupHoldPolicy): def __init__(self, optimizer, *, max_steps, decay_rate=0.5, min_lr=0.0, last_epoch=-1, **kwargs): """ Implementation of the Noam Hold Annealing policy from the SqueezeFormer paper. Unlike NoamAnnealing, the peak learning rate can be explicitly set for this scheduler. The schedule first performs linear warmup, then holds the peak LR, then decays with some schedule for the remainder of the steps. Therefore the min-lr is still dependent on the hyper parameters selected. It's schedule is determined by three factors- Warmup Steps: Initial stage, where linear warmup occurs uptil the peak LR is reached. Unlike NoamAnnealing, the peak LR is explicitly stated here instead of a scaling factor. Hold Steps: Intermediate stage, where the peak LR is maintained for some number of steps. In this region, the high peak LR allows the model to converge faster if training is stable. However the high LR may also cause instability during training. Should usually be a significant fraction of training steps (around 30-40% of the entire training steps). Decay Steps: Final stage, where the LR rapidly decays with some scaling rate (set by decay rate). To attain Noam decay, use 0.5, for Squeezeformer recommended decay, use 1.0. The fast decay after prolonged high LR during hold phase allows for rapid convergence. References: - [Squeezeformer: An Efficient Transformer for Automatic Speech Recognition](https://arxiv.org/abs/2206.00888) Parameters ---------- optimizer : torch.optim.Optimizer Optimizer to use for the scheduler. max_steps : int Total number of training steps. decay_rate : float Decay rate for the final stage of the schedule. Should be between 0 and 1. min_lr : float Minimum learning rate to use for the schedule. Should be between 0 and 1. last_epoch : int Last epoch to start the schedule from. Should be between 0 and max_steps. """ self.decay_rate = decay_rate super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get the learning rate for the given step.""" if self.warmup_steps is None or self.warmup_steps == 0: raise ValueError("Noam scheduler cannot be used without warmup steps") if self.hold_steps > 0: hold_steps = self.hold_steps - self.warmup_steps else: hold_steps = 0 return [ _noam_hold_annealing( initial_lr, step=step, warmup_steps=self.warmup_steps, hold_steps=hold_steps, decay_rate=self.decay_rate, min_lr=self.min_lr, ) for initial_lr in self.base_lrs ]
[docs]class WarmupAnnealing(WarmupPolicy): """Warmup learning rate annealing.""" def __init__(self, optimizer, *, max_steps, last_epoch=-1, min_lr=0.0, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get learning rate at current step.""" delta_lr = self.base_lrs[0] - self.min_lr mult = (step - self.warmup_steps) / (self.max_steps - self.warmup_steps) return [self.min_lr + (1 - mult) * delta_lr for _ in self.base_lrs]
[docs]class InverseSquareRootAnnealing(WarmupPolicy): """Inverse square root learning rate annealing.""" def __init__(self, optimizer, *, max_steps, last_epoch=-1, min_lr=0.0, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, **kwargs, last_epoch=last_epoch, min_lr=min_lr) def _get_lr(self, step): """Get learning rate at current step.""" denom = ((step + 1) / (self.warmup_steps + 1)) ** 0.5 return [initial_lr / denom for initial_lr in self.base_lrs]
[docs]class T5InverseSquareRootAnnealing(SquareRootConstantPolicy): """Inverse square root learning rate annealing.""" def __init__(self, optimizer, *, max_steps, last_epoch=-1, min_lr=0.0, **kwargs): super().__init__(optimizer=optimizer, max_steps=max_steps, **kwargs, last_epoch=last_epoch, min_lr=min_lr) def _get_lr(self, step): """Get learning rate at current step.""" return [1 / (step**0.5) for _ in self.base_lrs]
[docs]class PolynomialDecayAnnealing(WarmupPolicy): """Polynomial decay learning rate annealing.""" def __init__(self, optimizer, *, max_steps, min_lr=0.0, power=1.0, cycle=False, last_epoch=-1, **kwargs): self.power = power self.cycle = cycle super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get learning rate at current step.""" return [ _poly_decay( initial_lr, step=step - self.warmup_steps, decay_steps=self.max_steps - self.warmup_steps, power=self.power, min_lr=self.min_lr, cycle=self.cycle, ) for initial_lr in self.base_lrs ]
[docs]class PolynomialHoldDecayAnnealing(WarmupHoldPolicy): """Polynomial decay learning rate annealing.""" def __init__(self, optimizer, *, max_steps, min_lr=0.0, power=1.0, cycle=False, last_epoch=-1, **kwargs): self.power = power self.cycle = cycle super().__init__(optimizer=optimizer, max_steps=max_steps, last_epoch=last_epoch, min_lr=min_lr, **kwargs) def _get_lr(self, step): """Get learning rate at current step.""" return [ _poly_decay( initial_lr, step=step - self.hold_steps, decay_steps=self.max_steps - max(self.warmup_steps, self.hold_steps), power=self.power, min_lr=self.min_lr, cycle=self.cycle, ) for initial_lr in self.base_lrs ]
[docs]def register_scheduler(name: str, scheduler: _LRScheduler, scheduler_params: SchedulerParams): """ Checks if the scheduler name exists in the registry, and if it doesn't, adds it. This allows custom schedulers to be added and called by name during instantiation. Parameters ---------- name: Name of the optimizer. Will be used as key to retrieve the optimizer. scheduler: Scheduler class (inherits from _LRScheduler) scheduler_params: The parameters as a dataclass of the scheduler """ if name in AVAILABLE_SCHEDULERS: raise ValueError(f"Cannot override pre-existing schedulers. Conflicting scheduler name = {name}") AVAILABLE_SCHEDULERS[name] = scheduler sched_name = f"{scheduler.__name__}_params" register_scheduler_params(name=sched_name, scheduler_params=scheduler_params)
[docs]def get_scheduler(name: str, **kwargs: Optional[Dict[str, Any]]) -> _LRScheduler: """ Convenience method to obtain an _LRScheduler class and partially instantiate it with optimizer kwargs. Parameters ---------- name: Name of the scheduler in the registry. kwargs: Optional kwargs of the scheduler used during instantiation. Returns ------- A partially instantiated _LRScheduler """ if name not in AVAILABLE_SCHEDULERS: raise ValueError( f"Cannot resolve scheduler{name}'. Available optimizers are : " f"{AVAILABLE_SCHEDULERS.keys()}" ) scheduler_cls = AVAILABLE_SCHEDULERS[name] return partial(scheduler_cls, **kwargs)
[docs]def prepare_lr_scheduler( optimizer: optim.Optimizer, scheduler_config: Union[Dict[str, Any], DictConfig, None], train_dataloader: Optional[dataloader.DataLoader] = None, ) -> Optional[Dict[str, Any]]: """ Constructs an LR Scheduler (optionally) for a given optimizer, based on a config with the following schema. Parameters ---------- optimizer: The optimizer to use for the scheduler. name: <name of optimizer> lr: <maximal learning rate> # <additional optimizer arguments> args: name: auto # special keyword, resolves to correct optimizer config for given optimizer name # cls: mridc.core.config.optimizers.NovogradParams # explicit instantiation by class path params: # optional override parameters for the optimizer config betas: [0.8, 0.5] weight_decay: 0.001 scheduler_config: The scheduler config. name: <name of scheduler> iters_per_batch: null # computed at runtime; mandatory to have max_steps: null # computed at runtime or explicitly set here; mandatory to have # pytorch lightning args <mandatory> monitor: val_loss reduce_on_plateau: false # <scheduler config override> args: name: auto # special keyword, resolves to correct optimizer config for given optimizer name # cls: mridc.core.config.schedulers.CosineAnnealingParams # explicit instantiation by class path params: # optional override parameters for the optimizer config warmup_steps: null warmup_ratio: null min_lr: 0.0 last_epoch: -1 train_dataloader: Optional requirement, must be passed if "iters_per_batch" is defined instead of "max_steps". \ Used to compute effective "max_steps". Returns ------- A dictionary containing the LR Scheduler implementation if the config was successfully parsed along with other \ parameters required by Pytorch Lightning, otherwise None. """ if scheduler_config is not None: scheduler_config = maybe_update_config_version(scheduler_config) # Build nested dictionary for convenience out of structured objects if isinstance(scheduler_config, DictConfig): scheduler_config = OmegaConf.to_container(scheduler_config, resolve=True) elif dataclasses.is_dataclass(scheduler_config): # Recursively transform data classes to basic dictionaries scheduler_config = OmegaConf.create(scheduler_config) scheduler_config = OmegaConf.to_container(scheduler_config, resolve=True) # Test to see if config follows above schema add_max_args_flag = True interval = "step" if scheduler_config is not None: if "args" in scheduler_config: scheduler_args = scheduler_config.pop("args") else: scheduler_args = copy.deepcopy(scheduler_config) # Remove extra parameters from scheduler_args nest # Assume all other parameters are to be passed into scheduler constructor if "name" in scheduler_args and scheduler_args["name"] == "ReduceLROnPlateau": add_max_args_flag = False interval = "epoch" scheduler_args.pop("name", None) scheduler_args.pop("t_max_epochs", None) scheduler_args.pop("t_accumulate_grad_batches", None) scheduler_args.pop("t_limit_train_batches", None) scheduler_args.pop("t_num_workers", None) scheduler_args.pop("monitor", None) scheduler_args.pop("reduce_on_plateau", None) else: # Return gracefully in case `sched` was not supplied; inform user logging.info("Scheduler not initialized as no `sched` config supplied to setup_optimizer()") return None # Try instantiation of scheduler params from config class path if "_target_" in scheduler_args: scheduler_args_cfg = OmegaConf.create(scheduler_args) scheduler_conf = hydra.utils.instantiate(scheduler_args_cfg) scheduler_args = vars(scheduler_conf) # Get name of the scheduler scheduler_name = scheduler_conf.__class__.__name__ if "Params" in scheduler_name: scheduler_name = scheduler_name.replace("Params", "") else: # Class path instantiation failed; try resolving "name" component # Get name of the scheduler if "name" in scheduler_config: scheduler_name = scheduler_config["name"] else: logging.warning( "Could not resolve classpath for Scheduler Config, and `name` " "was not provided either. \n" "Scheduler cannot be instantiated !" ) return None # If class path was not provided, perhaps `name` is provided for resolution if "name" in scheduler_args: # If `auto` is passed as name for resolution of optimizer name, # then lookup optimizer name and resolve its parameter config if scheduler_args["name"] == "auto": scheduler_params_name = f"{scheduler_name}Params" else: scheduler_params_name = scheduler_args["name"] # Get override arguments provided in the config yaml file / Dict Config scheduler_params_override = scheduler_args.get("params", {}) # If params is itself a dict config object provided explicitly in Dict Config # Resolve to dictionary for convenience if isinstance(scheduler_params_override, DictConfig): scheduler_params_override = OmegaConf.to_container(scheduler_params_override, resolve=True) # Get and instantiate the Config dataclass for this scheduler scheduler_params_cls = get_scheduler_config(scheduler_params_name, **scheduler_params_override) scheduler_params = scheduler_params_cls # instantiate the parameters object scheduler_args = vars(scheduler_params) # extract just the dictionary from the Config object # Extract value to monitor in losses, if provided. if "monitor" in scheduler_config: monitor = scheduler_config.get("monitor") else: # Default to train loss monitor = "loss" # Store exact max_steps if it is provided if "max_steps" in scheduler_config and scheduler_config["max_steps"] is not None: max_steps = scheduler_config["max_steps"] elif "t_max_epochs" in scheduler_config: # Compute effective max_steps if t_max_epochs is provided if train_dataloader is None: logging.warning( "As `t_max_epochs` is provided/computed, it is required to pass the train dataloader in order\n" "to compute effective maximum number of steps.\n" "Scheduler will not be instantiated !" ) return None # Raise exception if neither `max_steps` nor `t_max_epochs` is provided if scheduler_config.get("t_max_epochs", None) is None: logging.warning( "`t_max_epochs` cannot be None when `max_steps` is not not provided.\n" "This can occur when `train dataloader` is not available to correctly " "prepare the scheduler.\n" "Scheduler will not be instantiated !" ) return None # Get iters_per_batch max_epochs = scheduler_config.get("t_max_epochs") accumulate_grad_batches = scheduler_config.get("t_accumulate_grad_batches") limit_train_batches = scheduler_config.get("t_limit_train_batches") num_workers = scheduler_config.get("t_num_workers") # Compute effective num max_steps num_samples = len(train_dataloader.dataset) # type: ignore # we may need to override ModelPT setup_optimization if train_dataloader.batch_size is not None: batch_size = train_dataloader.batch_size elif hasattr(train_dataloader, "batch_sampler") and train_dataloader.batch_sampler is not None: if train_dataloader.batch_sampler.micro_batch_size is not None: batch_size = train_dataloader.batch_sampler.micro_batch_size else: raise ValueError(f"Could not find batch_size from batch_sampler: {train_dataloader.batch_sampler}") else: raise ValueError(f"Could not find batch_size from train_dataloader: {train_dataloader}") drop_last = train_dataloader.drop_last max_steps = compute_max_steps( max_epochs=max_epochs, accumulate_grad_batches=accumulate_grad_batches, limit_train_batches=limit_train_batches, num_workers=num_workers, num_samples=num_samples, batch_size=batch_size, drop_last=drop_last, ) else: logging.warning( "Neither `max_steps` nor `iters_per_batch` were provided to `optim.sched`, " "cannot compute effective `max_steps` !\n" "Scheduler will not be instantiated !" ) return None # Inject max_steps (effective or provided) into the scheduler config if add_max_args_flag and scheduler_config.get("name", "") != "ExponentialLR": scheduler_args["max_steps"] = max_steps if scheduler_config.get("name", "") == "CyclicLR": del scheduler_args["max_steps"] # Get the scheduler class from the config scheduler_cls = get_scheduler(scheduler_name, **scheduler_args) # Instantiate the LR schedule schedule = scheduler_cls(optimizer, **scheduler_args) logging.info( 'Scheduler "%s" \nwill be used during training (effective maximum steps = %d) - \nParameters : \n(%s)', str(schedule), max_steps, OmegaConf.to_yaml(OmegaConf.create(scheduler_args)), ) # Wrap the schedule in PTL arguments to perform stepwise computation # Rather than epoch level computation reduce_lr_on_plateau = isinstance(schedule, optim.lr_scheduler.ReduceLROnPlateau) return { "scheduler": schedule, "interval": interval, "frequency": 1, "monitor": monitor, "reduce_on_plateau": reduce_lr_on_plateau, }
[docs]def compute_max_steps( max_epochs, accumulate_grad_batches, limit_train_batches, num_workers, num_samples, batch_size, drop_last ): """Compute effective max_steps from the provided parameters.""" _round = math.floor if drop_last else math.ceil sampler_num_samples = math.ceil(num_samples / max(1, num_workers)) if drop_last and num_workers > 1: logging.warning( "Please note that drop_last is broken in pytorch 1.6.0. We will fix when pytorch 1.7.0 is released" ) # TODO: Master version, not in pytorch 1.6.0 steps_per_epoch = _round(sampler_num_samples / batch_size) if isinstance(limit_train_batches, int) or limit_train_batches == 0.0: steps_per_epoch = min(steps_per_epoch, int(limit_train_batches)) elif steps_per_epoch != float("inf"): # limit_train_batches is a percentage of batches per epoch steps_per_epoch = int(steps_per_epoch * limit_train_batches) return math.ceil(steps_per_epoch / accumulate_grad_batches) * max_epochs
AVAILABLE_SCHEDULERS = { "WarmupPolicy": WarmupPolicy, "WarmupHoldPolicy": WarmupHoldPolicy, "SquareAnnealing": SquareAnnealing, "CosineAnnealing": CosineAnnealing, "NoamAnnealing": NoamAnnealing, "NoamHoldAnnealing": NoamHoldAnnealing, "WarmupAnnealing": WarmupAnnealing, "InverseSquareRootAnnealing": InverseSquareRootAnnealing, "T5InverseSquareRootAnnealing": T5InverseSquareRootAnnealing, "SquareRootAnnealing": SquareRootAnnealing, "PolynomialDecayAnnealing": PolynomialDecayAnnealing, "PolynomialHoldDecayAnnealing": PolynomialHoldDecayAnnealing, "StepLR": pt_scheduler.StepLR, "ExponentialLR": pt_scheduler.ExponentialLR, "ReduceLROnPlateau": pt_scheduler.ReduceLROnPlateau, "CyclicLR": pt_scheduler.CyclicLR, }